
Natural Language Processing…. Dr. T.Balasubramanian

406

Singaporean Journal of Scientific Research(SJSR)

Issue of International Journal of Applied Sciences (IJAS)
Vol.7.No.2 2015 Pp.406-410

available at :www.iaaet.org/sjsr
Paper Received : 12-05-2015
Paper Accepted: 17-08-2015

Paper Reviewed by: 1.Prof. Cheng Yu 2. Dr.M. Akshay Kumar
Editor : Dr. Chu Lio

--

NATURAL LANGUAGE PROCESSING

Dr. T.Balasubramanian

Sri Vidya Mandir Arts and Science College

Uthangarai, Krishnagiri (Dt).

Tamilnadu, India

balaeswar123@gmail.com.

ABSTRACT

Natural Language computer Processing holds great promise for making computer interfaces that are easier to use for

people, since people will (hopefully) be able to talk to the computer in their own language, rather than learn a

specialized language of computer commands. For programming, however, the necessity of a formal programming

language for communicating with a computer has always been taken for granted. We would like to challenge this

assumption. We believe that modern Natural Language Processing techniques can make possible the use of natural

language to (at least partially) express programming ideas, thus drastically increasing the accessibility of programming

to non-expert users. To demonstrate the feasibility of Natural Language Programming, this paper tackles what are

perceived to be some of the hardest cases: steps and loops. We look at a corpus of English descriptions used as

programming assignments, and develop some techniques for mapping linguistic constructs onto program structures,

which we refer to as programmatic semantics.

KEYWORDS : Natural language, programming, loop finder, procedural.

1. INTRODUCTION

Natural Language Processing and Programming

Languages are both established areas in the field of

Computer Science, each of them with a long research

tradition. Although they are both centered around a

common theme – “languages” – over the years, there

has been only little interaction (if any) between them

[1]. This paper tries to address this gap by proposing a

system that attempts to convert natural language text

into computer programs.

mailto:balaeswar123@gmail.com

Natural Language Processing…. Dr. T.Balasubramanian

407

 Fig 1: Natural Language Processing

2. MATERIALS AND METHODS

2.1. Background

Early work in natural language programming was rather

ambitious, targeting the generation of complete

computer programs that would compile and run. For

instance, the “NLC” prototype [1] aimed at creating a

natural language interface for processing data stored in

arrays and matrices, with the ability of handling low

level operations such as the transformation of numbers

into type declarations as e.g. float-constant(2.0), or

turning natural language statements like add y1 to y2

into the programmatic expression y1 + y2. These first

attempts triggered the criticism of the community [3],

and eventually discouraged subsequent research on this

topic.

3. DESCRIPTIVE NATURAL LANGUAGE

PROGRAMMING

Programming, resembling storytelling, can likewise be

distinguished into the complementary tasks of

description and proceduralization.

3.1. Syntactic Correspondences

There are numerous syntactic correspondences between

natural language and descriptive structures. Most of

today’s natural languages distinguish between various

parts of speech that taggers such as Brill’s [2] can parse

– noun chunks are things, verbs are actions, adjectives

are properties of things, adverbs are parameters of

actions. Almost all natural languages are built atop the

basic construction called independent clause, which at

its heart has a who-does-what structure, or subject-verb-

directObject-indirectObject(SVO) construction.

3.2. Scoping Descriptions

Scoping descriptions allow conditional if/then rules to

be inferred from natural language. Conditional

sentences are explicit declarations of if/then rules, e.g.

When the customer orders a drink, make it, or Pacman

runs away if ghosts approach. Conditionals are also

implied when uncertain voice is used, achieved through

modals as in e.g. Pacman may eat ghosts, or adverbials

like sometimes – although in the latter case the

antecedent to the if/then is underspecified or omitted, as

in Sometimes Pacman runs away.

package Customer;

sub orderDrink {

my ($drink) = @_;

$bartender = Bartender −>

new(...);

$bartender−>

makeDrink($drink);

}

package Main;

use Customer;

$customer =

Customer−>new(...);

$customer−>

orderDrink($drink);

package Customer;

sub orderDrink {

my ($drink) = @_;

}

package Main;

use Customer;

$customer =

Customer−>new(...);

if

($customer−>orderDrink

($drink)) {

$bartender = Bartender −>

new(...);

} $bartender−>makeDrink

($drink);

The descriptive and procedural representation for the

conditional statement When customer orders a drink, the

bartender makes it

 Fig 2: Scoping Descriptions

3.3. Set – Based Dynamic Reference

Set-based dynamic reference suggests that one way to

interpret the rich descriptive semantics of compound

noun phrases is to map them into mathematical sets and

set-based operations.

4. Procedural Natural Language Programming

In procedural programming, a computer program is

typically composed of sequences of action statements

that indicate the operations to be performed on various

data structures. Correspondingly, procedural natural

language programming is targeting the generation of

computer programs following the procedural paradigm,

starting with a natural language text.

Natural Language Processing…. Dr. T.Balasubramanian

408

Write a program to

generate 1000 numbers

between 0 and 99

inclusive. You should

count how many times

each number is generated

and write these counts out

to the screen.

@counts;

for($i = 0; $i < 10000;

$i++) {

&generateRandomNumber

(\$number);

&count($number);

}

$i = 0;

foreach $count (@counts)

{

&writeCount($i++,

$count);

}

sub

generateRandomNumber {

($ref) = @_;

}

sub count {

}

($number) = @_;

sub writeCount {

($index, $count) = @_;

}

$$ref = 1 + rand(99);

$counts[$number]++;

print $index, " ",

$count,"\n";

Natural Language

(English)

Programming Language

(Perl)

Side by side: the natural language (English) and

programming language (Perl) expressions for the same

problem

Fig 3 : Natural Language vs Programming

Language

4.1. The Step Finder

The role of this component is to read an input natural

language text and break it down into steps that can be

turned into programming statements. For instance,

starting with the natural language text You should count

how many times each number is generated and write

these counts out to the screen.

First, the text is pre-processed, i.e. tokenized and part-

of-speech tagged using Brill’s tagger [2]. Some

language patterns specific to program descriptions are

also identified at this stage, including phrases such as

write a program, create an applet, etc.,

Next, steps are identified as statements containing one

verb in the active voice. We are therefore identifying all

verbs that could be potentially turned into program

functions, such as e.g. read, write, count.

Finally, the object of each action is identified, consisting

of the direct object of the active voice verb previously

found, if such a direct object exists.

The output of the step finder process is therefore a series

of natural language statements that are likely to

correspond to programming statements, each of them

with their corresponding action that can be turned into a

program function (as represented by the active voice

verb), and the corresponding action object that can be

turned into a function

4.2. The Loop Finder

An important property of any program statement is the

number of times the statement should be executed.

The role of the loop finder component is to identify such

natural language structures that indicate repetitive

statements. The input to this process consists of steps,

fed one at a time, from the series of steps identified by

the step finder process, together with their

corresponding actions and parameters. The output is an

indication of whether the current action should be

repeated or not, together with information about the

loop variable and/or the number of times the action

should be repeated.

4.3. Comment Identification

The comment identification step has the role of

identifying those statements in the input natural

language text that have a descriptive role, i.e. they

provide additional specifications on the statements that

will be executed by the program.

4.4. A Walk – Through Example

The generation of a computer program skeleton follows

the three main steps highlighted earlier: step

identification, comment identification, loop finder.

First, the step finder identifies the main steps that could

be potentially turned into programming statements.

Natural Language Processing…. Dr. T.Balasubramanian

409

Next, the comment finder does not identify any

descriptive statements for this input text, and thus none

of the steps found by the step finder are marked as

comments. By default, all the steps are listed in the

output program in a comment section.

Finally, the loop finder inspects the steps and tries to

identify the presence of repetition.

#======================================

Write a program to generate 10000 random numbers

between 0 and

99 inclusive. You should count how many of times

each number

is generated and write these counts out to the screen.

#======================================

for($i = 0; $i < 10000; $i++) {

to generate 10000 random numbers between 0 and

99 inclusive

&generateNumber(number)

You should count how many of times each number is

generated

&count()

}

foreach $count (@counts) {

write these counts out to the screen

&writeCount(count)

}

Fig 4: Sample output produced by the Natural

Language Programming System

4.5. Evaluation and Results

One of the potential applications of such a natural

language programming system is to assist those who

begin learning how to program, by providing them with

a skeleton of computer programs as required in

programming assignments.

The result of the search process is a set of Web pages

likely to include programming assignments.

Next, in a post-processing phase, the Web pages are

cleaned-up of HTML tags, and paragraphs containing

the search key phrases are selected as potential

descriptions of programming problems. Finally, the

resulting set is manually verified and any remaining

noisy entries are thusly removed.

For the evaluation, we randomly selected a subset of 25

programming assignments from the set of Web-mined

5. CONCLUSION

In this paper, we showed how current stateof-the-art

techniques in natural language processing can allow us

to devise a system for natural language programming

that addresses both the descriptive and procedural

programming paradigms. The output of the system

consists of automatically generated program skeletons,

which were shown to help non-expert programmers in

their task of describing algorithms in a programmatic

way. As it turns out, advances in natural language

processing helped the task of natural language

programming.

But we believe that natural language processing could

also benefit from natural language programming. The

process of deriving computer programs starting with a

natural language text implies a plethora of sophisticated

language processing tools – such as syntactic parsers,

clause detectors, argument structure identifiers,

semantic analyzers, methods for co reference resolution,

and so forth – which can be effectively put at work and

evaluated within the framework of natural language

programming. We thus see natural language

programming as a potential large scale end-user (or

rather, end computer) application of text processing

tools, which puts forward challenges for the natural

language processing community and could eventually

trigger advances in this field.

REFERENCES

[1] BALLARD, B., AND BIERMAN, A. Programming

in natural language: ”NLC” as a prototype. In

Proceedings of the 1979 annual conference of

ACM/CSC-ER (1979).

[2] BRILL, E. Transformation-based error driven

learning and natural language processing: A case study

in part-of-speech tagging. Computational Linguistics 21,

4 (December 1995), 543–566.

[3] DIJKSTRA, E. On the foolishness of ”Natural

Language Programming”. In Program Construction,

International Summer School (1979).

[4] KATE, R., WONG, Y., GE, R., AND MOONEY, R.

Learning to transform natural to formal languages. In

Natural Language Processing…. Dr. T.Balasubramanian

410

Proceedings of the Twentieth National Conference on

Artificial Intelligence (AAAI-05) (Pittsburgh, 2005).

[5] LIEBERMAN, H., AND LIU, H. Feasibility studies

for programming in natural language. Kluwer

Academic Publishers, 2005.

[6] LIU, H., AND LIEBERMAN, H. Metafor:

Visualizing stories as code. In ACM Conference on

Intelligent User Interfaces (IUI-2005) (San Diego,

2005).

[7] LIU, H., AND LIEBERMAN, H. Programmatic

semantics for natural language interfaces. In

Proceedings of the ACM Conference on Human Factors

in Computing Systems (CHI-2005) (Portland, OR,

2005).

[8] PANE, J., RATANAMAHATANA, C., AND

MYERS, B. Studying the language and structure

in non-programmers’ solutions to programming

problems. International Journal of Human-Computer

Studies 54, 2 (2001).

[9] SINGH, P. The Open Mind Common Sense project.

KurzweilAI.net (January 2002). Available online from

http://www.kurzweilai.net/.

[10] TANG, L., AND MOONEY, R. Using multiple

clause constructors in inductive logic programming for

semantic parsing. In Proceedings of the 12th European

Conference on Machine Learning (ECML-2001)

(Freiburg, Germany, 2001).

